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ABSTRACT

Negative feedback received from users of voice agents can
provide valuable training signal to their underlying ML sys-
tems. However, such systems tend to have complex inference
pipelines consisting of multiple model-based and determin-
istic components. Therefore, when negative feedback is re-
ceived, it can be difficult to attribute the system error to a spe-
cific sub-component. In this work, we address this challenge
by building a system for error attribution and correction. We
prototype attributing errors to the ML models used for do-
main classification (DC) in the NLU component of an assis-
tant’s pipeline, using a combination of a model and rule based
system. We propose a simple method to add these detected er-
rors directly to offline DC model training, and study our sys-
tem’s effectiveness on a challenging test set of low-frequency
utterances. Our experiments on nine domains suggest that
augmenting DC training data with our method significantly
improves performance on a majority of them.

Index Terms— Error correction, domain classification,
natural language understanding

1. INTRODUCTION

To improve the performance of a machine learning (ML) sys-
tem, modelers must identify instances where their system is
making a mistake, then change the system’s behavior to cor-
rect it. In the relatively simple setups studied in most aca-
demic research, these systems typically consist of a single ML
model. Thus, through manual error analysis [1], practitioners
can then often innovate on the model architecture, training or
pre-training procedure, or data-augmentation process to boost
system performance (see the surveys of [2, 3, 4]).

This mostly straightforward process of analyzing errors
and improving the ML model, however, does not translate
cleanly to real-world commercial ML systems, such as digital
assistants like Alexa and Siri. These assistants are not single
ML models, but consist of multiple components, including
systems for automatic speech recognition (ASR), natural lan-
guage understanding (NLU), entity resolution (ER) [5, 6], and
others. These components are then run in a pipeline to gen-
erate the final result returned to each customer. Due to this
setup’s sequential nature, errors made in an earlier part of the
pipeline affect results returned by later components, making

it difficult to determine the root cause of a mistake [7].
Further, each of these components can be complex, con-

sisting of multiple ML models and deterministic artifacts, the
outputs of which are also pipelined and combined in highly-
engineered ways [8]. This complexity, combined with large
traffic volumes and decoupled model development [9] (ASR
models tend to be trained independently of NLU, etc.), make
it hard to determine which models are responsible for the full-
system result, and even harder to assign blame to and correct
the behavior of a specific model after a mistake.

In this work, we focus on isolating and correcting mis-
takes made by a specific part of the NLU system, the domain
classification (DC) models. DC models classify utterances
by domain, which are defined for a specific application such
as shopping or playing videos. To correct and improve these
models, we develop a multi-stage, offline pipeline to (1) de-
tect defective predictions made by commercial digital assis-
tants, (2) determine whether the DC models are to blame for
the defect, and (3) use the blameable examples to improve DC
performance. Our pipeline combines SOTA methods for dia-
log system evaluation adapted for our specific use-case with a
set of manually-crafted data filters. We evaluate our pipeline
on DC classifiers for nine NLU domains, measuring perfor-
mance on a challenging internal test set. We find that, not
only is our method able to identify, with high precision, a set
of DC errors that previously caused dissatisfaction among the
system’s users, augmenting DC model training with these er-
rors successfully corrects model performance on a majority
of our tested domains, significantly improving over a strong
in-production DC baseline.

2. RELATED WORK

The prior work most similar to ours is [10], who propose a
method to detect and correct DC errors in commercial NLU
systems. Their method, however, is more manually intensive,
requiring multiple new sets of human-annotated data to train
their DC error detection model and label predicted DC errors
with their true domains. In contrast, our method reuses exist-
ing labeled data to train our defect detection and attribution
models and does not require annotation of predicted DC er-
rors to incorporate them into offline model training. Further,
unlike [10], our method focuses on fixing only errors where
the DC models were invoked for the prediction. Since deter-



ministic systems (e.g. rules, FSTs) may make predictions for
many utterances, many of the errors detected by the system of
[10] cannot be fixed through changes to ML models. To ad-
dress this, we develop an extensive set of data filters to ensure
that our method only detects errors made by the DC models.

Also related is the work of [11], who propose a system for
NLU error detection, attribution, and correction. Our work
and theirs differ in three key aspects. First, rather than at-
tributing errors to a specific NLU component (DC models),
they perform an easier task of detecting errors made by any
part of the NLU system. Second, [11] only use NLU confi-
dence scores to judge NLU correctness, while we use model-
based methods which operate on dialog interaction features
along with metadata features such as confidence scores. Since
their method can only identify erroneous utterances with low
NLU scores, it misses errors with high-confidence scores – an
issue because neural models are often poorly calibrated [12].
Finally, most of their error-correction methods involve sub-
stantial manual effort, e.g. fixing or writing rules or annotat-
ing new data. We, on the other hand, directly add erroneous
utterances to offline training sets with no further annotation.

Other related work includes [13], who consider a simpler
task where errors can only be caused by NLU ML models
(not by other components, rules, etc.) and only conduct ex-
periments on datasets with simulated feedback. Further, [14]
and [15] also study NLU defect identification and correction.
Their methods, however, require that defective utterances
have subsequent, non-defective rephrases to provide fixes,
while our method has no such requirement. Finally, our
method builds on prior work, such as [16, 17] that have ex-
plored applications of self-learning to NLP and computer
vision. These methods train an initial classifier on a small set
of labeled data then, in a second step, train a new classifier on
a mix of the original labeled data and data self-labeled by the
initial classifier. Unlike these prior works, however, we use
human feedback to inform our self-labeling process.

3. ERROR DETECTION, ATTRIBUTION, AND
CORRECTION

Our pipeline for self-healing DC contains three components:
(1) a method for system-level defect detection, (2) a method
for fine-grained error attribution, and (3) a method for im-
proving the responsible DC model with this data.

3.1. System-level Defect Detection

We first identify the utterances on which the assistant made a
mistake. For this coarse-grained prediction, we use the SOTA
interaction quality model RoBERTaIQ [18]. We follow the
setup described in [18], training RoBERTaIQ on an existing
internal dataset containing hundreds of thousands of historical
multi-turn dialogues (user utterances and assistant responses).
These dialogues are annotated with binary interaction quality

labels indicating whether, from the end user’s perspective, the
assistant system made a mistake or gave a satisfactory result.
Since these labels are only representative of the user’s percep-
tion of their interactions with the assistant, they do not indi-
cate whether a specific component or ML model, such as DC,
made a mistake. See [18] for further modeling setup details.

3.2. Fine-grained Error Attribution

Our error attribution method consists of (1) manually-designed
filters to remove utterances where the DC model was not in-
voked, and (2) a model-based method to predict whether the
DC model was to blame for a system defect.
Deterministic Filtering: Large-scale NLU systems are of-
ten modularized into many domains [8, 19]. Each domain’s
module contains multiple domain-specific components – de-
terministic artifacts (rules, FSTs) and ML models for DC,
IC, and NER. For each input, the NLU system’s final output
will be selected [8] from each module’s deterministic artifact
matches and ML model interpretations. Since we are inter-
ested in fixing DC model mistakes, we focus only on utter-
ances where the NLU system used the DC predictions. If, for
instance, a rule was used instead, any resulting error cannot
be fixed by modifying the DC model. Thus, through extensive
data analysis, we devise a thorough set of system-specific fil-
ters1 to remove traffic not handled by the DC model.
Model-based Error Attribution: Given a set of filtered er-
roneous utterances, we need an error-attribution method to
determine if the DC model was to blame for an defective
system output. For this purpose, we adapt the Failure Point
Isolation (FPI) model introduced in [7]. Similar to RoBER-
TaIQ, FPI operates on features extracted from multi-turn dia-
log data, including user requests, assistant responses, and the
time separation between the requests. Additionally, it also
uses intermediate metadata from the dialog system, includ-
ing predictions and scores from each component, e.g. NLU’s
top-k interpretations and scores. These features are crucial
for error attribution, since they allow FPI to identify patterns
in each component’s behaviour associated with defective out-
puts. See [7] for further details on FPI’s model architecture.

The original FPI model is fine-tuned on human-annotated
data with labels indicating whether a turn was correct or
whether a primary system component (e.g. ASR, NLU,
ER) caused a failure. We obtained FPI’s training data from
the original authors to see if it is useful for our DC error-
attribution task. We found that the original label set is not
fine-grained enough – utterances annotated with NLU errors
could have mistakes caused by any NLU ML model (DC, IC,
NER) or deterministic system (e.g. an incorrect rule). Since,
in this work, we are focused on improving DC, we need fine-
grained error attribution to differentiate between errors made
by DC versus other parts of the NLU pipeline.

1Example filters: exact-match rules not invoked, FSTs not invoked, rules-
based contextual systems not invoked



To address this, we create a new fine-grained DC-error-
attribution dataset and train a new version of the FPI model
(same model architecture, features, experimental design) on
it. We call this new model DC-FPI. In order to generate our
new dataset, we need a method to determine whether the DC
model made a mistake on a given utterance. Unlike [10], who
collect new, human-annotated data to train a DC error attribu-
tion model, we instead devise a novel, yet simple, method to
generate DC error attribution labels by reusing existing pro-
duction DC model training data. To generate labels, we take
a set of labeled utterances used for DC model training and
compare their ground-truth labels to the domain originally
predicted by the historic production NLU system. We then
label an utterance (observed by the historic NLU system) as
having a DC error if there is a mismatch between the two.

To generate a dataset to train and evaluate DC-FPI, we use
a large set of recently-annotated DC data (derived from four
recent months in our case). For each utterance, we extract the
metadata and textual features for input to DC-FPI and gen-
erate a binary label by comparing its annotated domain with
the historic NLU DC prediction. We next apply our set of
manually-designed filters to keep only utterances where the
DC model was used for prediction. We split this data into
train, val and test sets in non-overlapping temporal windows.
Finally, we apply RoBERTaIQ (§3.1) to the utterances in our
val and test sets, keeping only utterances with predicted de-
fects. Validating and testing on this set of defective utterances
allows us to measure DC-FPI’s ability to attribute system de-
fects to the DC models.

We train a binary DC-FPI classifier, with the label 1 in-
dicating a DC error. On its test set, DC-FPI achieves an F1
of 0.64 (Precision 0.69, Recall 0.59). For our task, however,
high precision (correctly identifying DC errors) is more im-
portant than high recall. We find that by using a higher clas-
sification threshold (e.g. DC-FPI confidence > 0.9) we can
achieve strong precision (≈ 0.85) on a large number of do-
mains while maintaining acceptable recall (≈ 0.16) to detect
a variety of DC errors (note that a high precision is attrac-
tive when user traffic is high in volume). We apply the trained
DC-FPI model to a new set of filtered, defective, un-annotated
traffic (after the training window) to then identify utterances
with DC errors.

3.3. Error Correction for Domain Classification

For our application, we follow the modularized NLU setup
of [8], where each of the n domains has its own binary DC
classifier. Each classifier is trained on the same dataset, but
with different labels depending on which label is in-domain.
For example, “read the great gatsby” would be labeled 1 to
train the Books domain DC classifier and 0 for all others.

Given a defective utterance with a DC error, we only know
which domain that utterance should not be assigned to. The
correct domain is unknown. For offline DC training, we can

use this information by adding these erroneous utterances to
the hypothesized domain’s training data with a negative la-
bel. A binary DC model trained on this augmented training
set should then predict lower in-domain class probabilities for
these and similar utterances at inference. We compare the of-
fline test performance of DC models trained with and without
these added negatives to evaluate the utility of our methods.

4. EXPERIMENTAL SETUP

To evaluate the effectiveness of our error-correction methods,
we compare DC models trained on standard training sets to
those augmented with our predicted DC errors. As our base-
line, we use an internal production dataset containing sev-
eral million utterances annotated with ground-truth domains
spanning tens of domains. While training data is the same
across domains [8], a separate binary DC classifier is trained
for each with domain-specific in/out-of-domain (OOD) la-
bels. For our experiments, we train binary DC classifiers for
nine domains: Books, Calendar, CinemaShowTimes, Com-
munication, DailyBriefing, GeneralMedia, Global, Shopping,
and Video. We select these domains as they cover a large
variety of user requests and have varying traffic volumes.

We augment this baseline training set with domain-
specific negatives generated as follows: 1. We apply RoBER-
TaIQ to a sample of recent unlabeled runtime traffic from
our nine selected domains to identify utterances with system
defects. 2. Next, our manually-designed filters remove defec-
tive traffic where the DC model was not invoked. 3. Finally,
we run inference with our DC-FPI model on these filtered
erroneous utterances, using a high classification threshold
(0.9) to ensure high-precision.

For each our nine domains we now have a set of utterances
where (1) the historical production system predicted the cor-
responding domain, e.g. Books, and returned a result to the
user, (2) the production DC model was used for that predic-
tion (3) the user perceived a defect with that result, and (4)
incorrect DC is predicted to be the cause of that defect. For
each domain, we can then augment our internal DC training
set with this domain-specific set of DC errors, label them with
the OOD class, and fine-tune a new DC model.

For each domain’s DC model, we use the same, in-
production model architecture – a 4-layer BERT [20] dis-
tilled [21] from a larger BERT teacher pretrained on an
internal corpus. Due to production constraints, the input to
these models is only the text of a single utterance. Unlike
RobertaIQ and DC-FPI, they do not leverage extra metadata
or prior dialog context. We tune the learning rate and batch
size for each DC model.

For evaluation, we use an internal test set of low-frequency
utterances, manually annotated with their correct DC. This
dataset contains hundreds of thousands of labeled utterances
sampled from the tail of the live traffic. Like our training data,
it contains utterances from tens of domains, and we generate



Table 1. DC results for Prod (production baseline), IQ
(RoBERTaIQ), IQF (RoBERTaIQ+filters), and IQFDC (our
method). P/R is short for Precision-Recall AUC. Performance
is relative to the prod baseline. For each domain, bold entries
outperform all other models. * indicates significant improve-
ment over prod baseline: randomization test, p < 0.05.

Books Calendar CinemaShowTimes Communication
F1 P/R F1 P/R F1 P/R F1 P/R

Prod – – – – – – – –
IQ -1.8 -5.0 -7.0 -5.8 +14.7* -1.2 -11.1 -11.9

IQF -2.2 -4.5 -4.4 -5.1 +12.2 -7.8 -11.8 -7.3
IQFDC +1.7* +0.3* +1.5* +0.4 +10.8* +1.9 -1.3 -1.5

DailyBriefing GeneralMedia Global Shopping Video
F1 P/R F1 P/R F1 P/R F1 P/R F1 P/R

Prod – – – – – – – – – –
IQ +0.1 -1.9 -21.9 -35.4 -1.5 -3.2 -0.8 -0.7 -1.0 -2.3

IQF -1.6 -2.1 -23.5 -35.0 -4.0 -5.3 -0.8 -0.5 -0.6 -1.0
IQFDC +1.3* +0.3 -6.3 -8.4 -0.4 -0.5 +0.3* +0.1* 0.4 0.0

nine different binary labelings for our nine DC classifiers. We
evaluate on such utterances as we find that error-causing user
queries tend to be low-frequency since the head of the agent’s
traffic is often handled with deterministic systems.

We evaluate our method against three baselines: 1. Pro-
duction: the in-production baseline is trained on the internal
DC training set with no augmentation. 2. RoBERTaIQ: we
augment the DC training set with negatives sampled from
the set of defective utterances detected by RoBERTaIQ. No
data filters or DC-FPI. 3. RoBERTaIQ+filters: same as
RoBERTaIQ, except we filter the defective utterances with
our manually-crafted data filters. No DC-FPI.
We evaluate with F1 and precision-recall AUC and report rel-
ative performance change versus the production baseline. For
RoBERTaIQ and RoBERTaIQ+filters, we augment with the
same number of utterances (per domain) as our full method.

5. RESULTS

Table 1 shows the test results for our IQFDC method and
the baselines. We find that adding our method’s negatives
improves over the production baseline on six of nine do-
mains. On those domains, it increases relative F1 by 3.1%
and PR-AUC by 0.6%, on average. Our method degrades per-
formance on three domains (Communication, GeneralMedia,
Global); analyzed in the next section.

We also observe that neither baseline augmentation
method (RoBERTaIQ, RoBERTaIQ+filters) is consistently
better than the production model, often lagging behind by
more than 2% PR-AUC. These weak performances highlight
the importance of our full method’s fine-grained error attri-
bution with DC-FPI. Unless, by chance, the DC model is
to blame for most erroneous utterances in a given domain,
many utterances augmented with these baselines will have
errors caused by other models or components. This noise in
the augmentation data helps cause the performance decreases
found for both baselines across almost all domains.

5.1. Error Analysis

We analyze in further depth the three domains (Communi-
cation, GeneralMedia, Global) where our method underper-
forms the production baseline. For each domain, we focus on
two sets of data: (1) predicted errors added to the DC training
set; (2) test utterances which our method’s DC misclassified.
We learn the following from these analysis:

Correctly identified negatives may not always improve
production model’s performance: For analysis one, we an-
alyze utterances with predicted DC errors from each of the
three domains, along with their multi-turn dialog contexts.
We find that, while most indeed have DC errors, some are
ambiguous and difficult to classify when viewed in isolation.
This ambiguity is no problem for the models we use to de-
tect and attribute errors as they use multi-turn dialog fea-
tures. Since our production DC models, however, do not make
use of such features, adding ambiguous negatives, therefore,
might hurt performance if the negative domains are reason-
able without added context. Future work can evaluate contex-
tual DC models [22] that might better learn from the complex
erroneous utterances our method detects.

Domains that may not benefit from adding negative
data can be identified based on the performance of the
DC-FPI model: Breaking down the performance of the DC-
FPI model, we observe that under-performant domains ob-
serve a weaker error attribution accuracy. For instance DC-
FPI’s performance on GeneralMedia, Global and Communi-
cations are 0.42, 0.31 and 0.35, respectively. Therefore, while
we observe that not all domains may benefit from our method,
such domains can be filtered out based on the performance of
the DC-FPI model.

6. CONCLUSION

In this work, we propose a system to detect, attribute, and
correct errors in commercial NLU systems. Using the ML
models for DC as a testbed, we focus on finding and correct-
ing system defects caused by incorrect DC. These efforts are
complicated by the pipelined setup of commercial dialog sys-
tems – many ML and deterministic systems contribute to the
full system response and could cause an error. To address
this challenge, we develop and adapt SOTA ML models and
manually-crafted data filters to determine whether DC models
caused a system error. Finally, we propose a method to add
these errors to offline DC model training to correct model be-
haviour and increase performance. We conduct experiments
on nine NLU domains, and find that our method often signifi-
cantly boosts performance – on five of the nine it improves F1
by 3.1% relative, on average, over an in-production baseline.

Next steps in the project can extent the error attribution to
multiple SLU components and enhancing their performance
through a single error attribution system. We also target to
enrich the feature set for our error attribution system to im-
prove accuracy for domains where we don’t observe benefit.
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